Azimuthally-sensitive two-pion interferometry in U+U collisions at STAR ## John Campbell – OSU Midwest Critical Mass – 3/8/14 ## Overview - Why Uranium? - 2nd Order Azimuthal Femtoscopy - Data Set and Cuts - Correlation Functions - Radius Oscillations - Conclusions and Next Steps ## Why U+U for Azimuthal Femtoscopy? - Au+Au: spherically symmetric nucleus - U+U can give full overlap, but with many different orientations ## 2nd order Femtoscopy ## Find eccentricity with Fourier moments of R_{side} $$\varepsilon \approx 2 \frac{R_{s,2}^2}{R_{s,0}^2}$$ ## Data Set - U+U, $\sqrt{s_{NN}} = 193 \, GeV$ - ~13 Million Events from 1% ZDC trigger - ~ 1.1 Million BB events (after cuts) $$q_{n,x} = \frac{1}{\sqrt{M}} \sum_{i=1}^{M} \cos(n\varphi_i)$$ $$q_{n,y} = \frac{1}{\sqrt{M}} \sum_{i=1}^{M} \sin(n\varphi_i)$$ | Event Cuts | | Track Cuts | | Pair Cuts + Binning | | |---------------------|-------------------|--------------------|-------------------------|---------------------|-------------------------| | $ V_z $ | < 30.0 cm | n | < 0.5 | k _T | (0.15 GeV, 0.60
GeV) | | V _r | < 2.0 cm | P _T | (0.15 GeV,
0.80 GeV) | φ | 8 Bins | | q_2 | >1.8 (top 10% BB) | $ N\sigma_{pion} $ | < 2 | Ψ_{EP} | 16 Mixing Bins | | $N_{\text{ch,TPC}}$ | <1000 | N _{Hits} | > 15 | V_z | 12 Mixing Bins | | | | DCA | < 3 cm | | | #### **Event Plane Flattening** Raw EP vs. Flat EP - q₂ Bin: 10 Correction Used: Psi Shift Not yet implemented: Phi-weight, Recentering $$\Psi \rightarrow \Psi' = \Psi + \delta(\Psi)$$ $$\delta(\Psi) \equiv \sum_{n=1}^{\infty} \frac{1}{n} [-\langle \sin n\Psi \rangle \cos n\Psi + \langle \cos n\Psi \rangle \sin n\Psi]$$ ## Correlation Functions – $\pi^+\pi^+:90-100\%$ q₂ ## Correlation Functions – $\pi^{-}\pi^{-}$: 90-100% q₂ ### R² vs. Φ: 90-100% Radii are *not* corrected for detector resolution, which damps oscillations. ### R² vs. Φ: 80-90% Radii are *not* corrected for detector resolution, which damps oscillations. #### R² vs. Φ: 60-70% Radii are *not* corrected for detector resolution, which damps oscillations. #### R² vs. Φ: 40-50% Radii are *not* corrected for detector resolution, which damps oscillations. #### R² vs. Φ: 20-30% Radii are *not* corrected for detector resolution, which damps oscillations. #### R² vs. Φ: 0-10% Radii are *not* corrected for detector resolution, which damps oscillations. ## R²(Φ) Fourier Components ## Conclusions and Next steps - Oscillation signal is there (R_{os}!)... - ... but messy (R_s) - Highest q_2 bin yields ϵ_f = 0.033 +/- 0.006 (which will likely increase) - Corrections → Resolution, phi-weight, recentering - Get/perform Glauber calculations of initial shape - Encourage theorists to calculate predictions of the final state size and shape (interest from Heinz group)